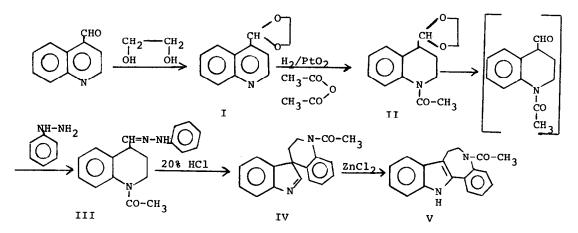
FISHER INDOLE SYNTHESIS


THE SYNTHESIS OF 1-ACETYL-6:7-DIHYDRO-2:3-BENZINDOLO(2:3-4:5)AZEPINE

Theodore S. T. Wang

Department of Nuclear Medicine University of Connecticut Farmington, Conn. 06032

(Received in USA 24 December 1974; received in UK for publication 1 April 1975)

Literature examples of preparations of the indolobenzazepines are limited^{1,2,3}. During the search for a more generally applicable method for forming the indolobenzazepine system (V), it became apparent that the well established Plancher rearrangement^{4,5,6} (IV \rightarrow V) could be modified to form the desired fused indole polycyclic system, simply by employing a spiroindolenine as the reactant. The mechanism of the reaction involves initial protonation of the basic indolenine nitrogen atom, followed by Wagner-Merrwein type rearrangement and loss of a proton to yield the wanted indolobenzazepine system.

To make possible selective reduction of the pyridine portion of the quinoline ring without affecting the aldehyde group, the dioxolane derivative (I) of quinoline-4-aldehyde⁷ was prepared by azeotropic distillation with ethylene glycol in the presence of p-toluenesulfonic acid in benzene. A viscous liquid at 156-7⁰/2mm was obtained (65%), (C₁₂H₁₁NO₂). IR(CHCl₃): 2.67 μ (-C=N-) and

9.05µ (-C-O-C-), but no carbonyl bond. Direct acylation and catalytic hydrogenation of I with acetic anhydride/acetic acid and H_2/PtO_2 at $\sim 60^{\circ}$ under 601b/in² pressure yielded compound II at $142-4^{O}/0.2$ mm, (71%), (C14H₁₇NO₃). IR(CHCl₃): 6.15µ (amide) and 9.00µ (-C-O-C-). Hydrolysis of the dioxolane (II) with 5% HCl yielded the aldehyde, which was immediately converted to the phenylhydrazone (III) in the usual manner⁸. mp 183-5^o, (67%), ($C_{18}H_{19}N_{3}O$). The Fisher cyclization of III was found to proceed smoothly in 20% HCl/MeOH at room temperature for 3 days. After the methanol was removed, the residue was treated with 10% NH4OH. The precipitate was collected and crystallized from chloroform-ether. mp 263-5°, (74%), ($C_{18}H_{16}N_2O$). The structure of IV was verified by UV(MeOH): 208mµ (log € 4.40) and 255mµ (log € 3.97). IR(KBr): 2.60 μ (-C=N-), 6.15 μ (amide), which were compared with IR and UV spectra of 3,3-dimethylindolenine⁹ and cyclohexanespiroindolenine⁶. Picrate: mp 179-81^o. The Plancher rearrangement occurred readily with $ZnCl_2$ at $170^{\circ}/N_2$ from IV producing l-acetyl-6:7-dihydro-2:3-benzindolo(2:3-4:5) azepine (V), which was purified on a neutral AlO₃ column by elution with benzene, mp 201-3⁰, (56%), $(C_{18}H_{16}N_{2}O)$. Picrate: mp 157-8°. UV (MeOH): 225mµ (log \in 4.15) and 282mµ (log ∉ 3.72); the typical indole absorptions, IR(KBr): 2.88µ (-NH) and 6.15µ (amide) were compared with absorptions of 2,3-dimethylindole⁹, cycloheptenoindole⁶, and 6:7-dihydro-1-methyl-2:3-benzindolo(2':3-4:5)azepine¹.

References

- 1. J. T. Braunholtz and F. G. Mann, J. Chem. Soc., 3377 (1958).
- H. B. MacPhillany, R. L. Dziemian, R. A. Lucas and M. E. Kuehne, J. Am. Chem. Soc., <u>80</u>, 2172 (1958).
- 3. G. N. Walker, A. R. Engle and R. J. Kempton, J. Org. Chem., <u>37</u>, 3755 (1972).
- 4. R. Boyd-Barret, J. Chem. Soc., 321 (1932).
- P. L. Julian, E. W. Meyer and H. C. Printy, "The Chemistry of Indole", <u>Heterocyclic Compounds</u>, Vol. 3, John Wiley and Sons Inc., 1952, pp. 102-4.
- 6. G. Jones and T. S. Stevens, J. Chem. Soc., 2344 (1953).
- 7. H. Kaplan, J. Am. Chem. Soc., <u>63</u>, 2654 (1941).
- 8. F. Mann and T. J. Willcox, J. Chem. Soc., 3839 (1959).
- 9. B. Brunner, Monatsh, 16, 184 (1895).